Bilgisayarla Görü
- Image Processing -

Yrd. Doç.Dr. Ediz Şaykol
Elements of Image

- Light reaches surfaces in 3D.
- Surfaces reflect.
- Sensor element receives light energy.
- Intensity is important.
- Angles are important.
- Material is important.
FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.
Sampling and Quantization
We can think of an image as a function, f, from \mathbb{R}^2 to \mathbb{R}:

- $f(x, y)$ gives the intensity at position (x, y)
 - Realistically, we expect the image only to be defined over a rectangle, with a finite range:
 - $f: [a,b] \times [c,d] \rightarrow [0,1]$

A color image is just three functions pasted together. We can write this as a “vector-valued” function:

$$f(x, y) = [r(x, y), g(x, y), b(x, y)]$$

Table

```
<table>
<thead>
<tr>
<th></th>
<th>62</th>
<th>79</th>
<th>23</th>
<th>119</th>
<th>120</th>
<th>105</th>
<th>4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
<td>9</td>
<td></td>
<td>62</td>
<td>12</td>
<td>73</td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>58</td>
<td>197</td>
<td>46</td>
<td>46</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>46</td>
</tr>
<tr>
<td>175</td>
<td>135</td>
<td>5</td>
<td>188</td>
<td>191</td>
<td>68</td>
<td>0</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>29</td>
<td>26</td>
<td>37</td>
<td>0</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>89</td>
<td>144</td>
<td>147</td>
<td>187</td>
<td>102</td>
<td>82</td>
<td>208</td>
<td></td>
</tr>
<tr>
<td>255</td>
<td>252</td>
<td>0</td>
<td>166</td>
<td>123</td>
<td>62</td>
<td>0</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>63</td>
<td>127</td>
<td>17</td>
<td>1</td>
<td>0</td>
<td>99</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>
```
To Extract Blobs

What are “blobs”?
- Regions of an image that are somehow coherent

Why?
- Object extraction, object removal, compositing, etc.
- …but are “blobs” objects?
- No, not in general

Simplest way to define blob coherence is as similarity in brightness or color:
Thresholding (Eşikleme)

Basic segmentation operation:

\[\text{mask}(x,y) = 1 \text{ if } \text{im}(x,y) > T \]
\[\text{mask}(x,y) = 0 \text{ if } \text{im}(x,y) < T \]

T is threshold
 - User-defined
 - Or automatic

Same as histogram partitioning:
Threshold to Detect Edges
Need Adaptive Thresholding

FIGURE 10.30
(a) Original image. (b) Result of global thresholding. (c) Image subdivided into individual subimages. (d) Result of adaptive thresholding.
Region Growing

- Start with initial set of pixels K
- Add to K any neighbors, if they are within similarity threshold
- Repeat until nothing changes

Also called “seed points”

K pixels having value 255
Threshold between 225-255

Threshold between 195-255

Noise or variation of intensity may result in holes or over-segmentation

Shading??
Mean-Shift Algorithm

At the high level, we can specify **Mean Shift** as follows:

1. Fix a window/circle around each pixel.
2. Compute the mean within the window/circle.
3. Shift the window/circle to the mean and repeat till convergence (stop when pixel = mean).
Segmentation ??

• Blob extraction
 – Thresholding
 – Adaptive Thresholding
 – Region Growing
 – Mean-Shift
 – ...

• Problem is OBJECT is not equal to BLOB !!!